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LETTER TO THE EDITOR 
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Abskact. Concavity properties of a recently g e n e d i d  (not necessarily extensive) entropy 
enable, among othew the generalization of the Bogolyubov inequality, hence of the varia- 
tional method in equilibrium statistid mechanics. 

Attempts to conveniently generalize the standard concept of entropy constitute an 
important concern in the statistics literature [l]. Properties currently discussed in these 
works are addifiuify (or extensiuify) and subadditiuity. Curiously enough, no major 
interest is payed to concauify, which, from a physical point of view, is very important 
since it guarantees the thermodynamic stability of the system. 

On a multifractal basis, a generalized entropy has been recently introduced with the 
aim of gemeraling statistical mechanics [2] and thermodynamics 131. This new entropy 
has been the subject of much recent work 1471 and can be regarded as a non-logarithmic 
information measure. Moreover, it has enabled [SI a longstanding puzzle in astrophysics 
to be overcome, namely, the inability of Boltzmann-Gibbs statistics to provide aJTnite 
mass for the polytropic model of stellar dynamics [9] (we recall that the long-range 
gravitational interaction between the stars of a galaxy makes the problem an intrinsically 
non-extensive one). This generalized entropy is given (in units of a conventional con- 
stant k)  by [Z] 

(1) 

where the set {p i }  corresponds to a normalized probability distribution associated with 
the microscopic configurations of the system, and qs9 .  A non-diagonal version of ( I )  
reads [7] 

where p is the density operator (whose eigenvalues are { p i } ) .  It has been proven in [Z] 
that, contrary to what happens with the well known Renyi entropy, S, is concave 
(convex) for q>O (q<O).  For q= 1, S, recovers the familiar Shannon entropy 
(-TI In p ) .  

'f Permanent address: Departamento de Fisica, Universidad Nacional de La Plata, C.C. 67, (1900) La Plata, 
Argentina. 
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The aim of the present paper is to show that this concavity property allows for a 
natural extension, to arbitrary q, of the celebrated Bogolyubov inequality, hence of the 
variational method in equilibrium statistical mechanics. 

Let us first consider the functionf(x)=(l -@)/(q- 1). It is straightforward to 
verify that, for x 2 0 ,  

f ( x ) > l - x  ifq<2 

= I - x  i fq=2  

4 1 - x  ifq>2. 

It follows that, for q<2, 

where b and bo are arbitrary density operators (the equality holds if and only if b= 
bo). If we consider all possible values of q, we obtain 

=o ifq=2 (Sb) 

GO ifq>2. ( 5 4  

In the q+l limit, ( b / b ~ ) ~ - ' % l + ( q - l )  ln($/b0), hence (Sa) implies the well known 
inequality [lo] 

(6)  

We see that, for q# 1, equations (5) cannot be split in two pieces, as in equation (6). 
This is, of course, a consequence of the non-extensivity of S,. 

Equations (5) pave the way for the extension of Bogo@bov inequality. Let 2 and 
2o stand for two arbitrary Hamiltonians, one of which (XO) is of a manageable nature, 
whereas the other (2) is not easy to handle, dthough it is precisely the one in which 
we are primarily interested. Associated with these Hamiltonians, we have the following 
equilibrium density operators [3] 

-Tr po In po 4 -Tr po In p. 

Po=[I -p(1 -q)20]('/'-'7)/zrJ (7) 

Z=Tr[l -p(1 - q ) 2 ] ( g / ' - q )  (10) 
where p =  l/kT,Let us recall thaLfi0 vanishes ( b  vanishes) whenever the eigenvalues 
of[I-p(l-q)Xo] ([1-/3(1-q)X])vanishorarenegative[2].Byplacing(7) and(9) 
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into (5) we obtah  

=o i f q = 2  

6 0  i f q > 2  

with 

The free energies associated, respectively, with 2Vo and 2V are given by [3] 

1 zp-1 
Fo=-z 

and 

1 z I - 4 - 1  

P 1-4 
p=-- 

With the help of (13) and (14) we can now cast the left member of (11) into the form 

Finally, we can rewrite (11) as follows: 

FQ-+ I-- - i f q < 2  

i f q = 2  

2-+ I-- ~ ifq>2 

=O ( 1) 

=O ( 1) 

H H P(1-4)  

H 

H H P ( 1 - 4 )  

where we have used the fact that both [ 1 - p(  1 - q)Fo] and [ 1 - p( 1 - q)Fl are positive. 
In the 4-1 limit we have 

H*I+P(I -q)(2-20)0 (17) 

hence 

F Q F ~ +  (2- 20>o (18) 

which is the well known [lo] Bogolyubov inequality. 
Inequalities (16) legitimate the use of parameters entering 2o as variational ones 

in order to discuss the complex Hamiltonian #. In other words, it is justified to 
extremalize the right-hand side of (16). This is of course the basis of the variational 
method in equilibrium statistical mechanics, which is now generalized to arbitrary q on 
account of the concavity properties of S,. 
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Notice also in definition (12) that a ratio appears rather than the customary dfier- 
ence (2-ZO). This again shows that lack of extensivity is not essential in order to 
attempt physical applications. On the other hand, lack of concavity, a property which 
is sometimes disregarded by the statistics community, would preclude the use, in physics, 
of this type of variational procedures. 

The authors are indebted to E M F Curado and R N Silver for interesting remarks. 
One of us (U) wishes to thank the CBPF for its kind hospitality. 
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